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It is well known that the current carriers in a thermally ionized gas
vary in composition, but that electrons [1]make the fundamental
contribution to the conductivity of the gas, since their mobility is
incomparably larger than that of other current-carrying particles, We
shall thus be concerned only with electron conductivity. If the gas

is under a high presswre in a weak electric field, then in estimating
its electrical conductivity by classical means the same concepts are
usually employed as those which Drude applied in the theory of metal-
lic conduction. The Drude-Lorentz formula for electrical conductivity
was subsequently perfected by Cowling and Chapman who introduced a
coefficient to take into account the rate at which the particle inter-
action forces decrease with distance [2]), For electron Goulomb inter~
action this coefficient takes the value 0, 532 instead of 0,500 as com=
pared with the Drude-Lorentz formula.

For high pressures and low electric field strengths the electron drift
velocity in the field is vanishingly small compared with the mean
velocity of random motion, and so it is logical to suppose that the
elecuron free time is independent of the drift velocity, and this sup-
position leads in the end to the conclusion that Ohm's law is appli-
cable to gases at high pressure in very weak fields.

However, we must iot overlook the fact that even under the conditions
mentioned the conclusion concerning the validity of Ohm's law is only

an approximation which becomes less accurate, the lower the gas
pressure and the greater the field strength.

In what follows the conductivity of the gas is also determined by
Drude’s method, but with the refinement that in determining the elec-
tron free time the drift velocity of these particles in the field is
considered.

Let the concentration of free electrons be known,
also their mean effective collision cross section, and
congequently the mean free path. Let the distribution
of quantities in the gas be spatially isotropic and in- .
dependent of time, Assuming also that the macro-
scopic parameters of the state of the gas are given
we will find the conductivity ¢ in accordance with the
definition

o =env/E. (1)

Here e is the electronic charge, ne is the free
electron concentration, v is the mean drift velocity
during the free time on an interval A,

Since all quantities on the right side of (1), with
the exception of v, are assumed to be given, it follows
that the search for the expression ¢ reduces to a de-
termination of the mean drift velocity of the electrons.
This problem may be solved exactly if the distribution
function of electron velocities in a gas situated in an
external field is known. This function has, however,
been found only in the first approximation [1], which
is suitable for weak fields only; it will be shown below
that in order to determine o it is not necessary to
know the distribution function, but that it suffices to
use kinematic relationships only.

We surround some particle of the gas (figure) with
a sphere of radius A, Clearly, inside this sphere
there are N = 47 A% ng/3 free electrons, Drifting under
the influence of the field (in Fig. 1 it is parallel to
the x axis), the electrons will be scattered on the
particle. After scattering, in general the electrons
will move in the field along curved trajectories. We
must not lose sight of the fact that the fundamentals
modes of collision are electron-ion and electron-
molecule interactions. Molecules and ions have large
mass and so their mobility in fields which are not
very strong does not depend on the field strength, In
view of this we may assume that the free motion of
electrons, with the stipulation that the gas is iseotropic,
will be bounded by the surface of a spherical cell with
a radius of exactly A. If we confine ourselves to fields
which are not strong, we may assume that the inten-
sity of electron scattering is virtually uniform in all
directions.

We will consider the motion of electrons in an
element of a spherical sector with aperture angle a.
Since the volume of the element is equal to 27A3/3 x
x sin « da, and under our conditions the scattering
intensity is independent of angle, dNg, = ng 2mA%/3 X
X sin @ do electrons move in the element. The action
of the field on these electrons is manifested kinema-
tically in the fact that during the time taken to tra-
verse an interval A of free path, a drift velocity vy
is added to the component of mean random motion
parallel to the field vy. Geometrically, the effect of
this action reduces to rotating the mean velocity V
through some angle (figure) about the scattering center.
We shall find the drift velocity v,. To do this we
write

Asin (@ — &) =V sinat, ( m,) @)
Acos{a — &) = (Veosa + Yywa)T.

Here A sin (¢ —£) is the component of the free path
of the electrons inside the element under consider-
ation, normal to the field, A cos (@ — £) is the com-
ponent of the path parallel to the field, 7 is the free
time of the electrons, expressed in terms of the drift
velocity and the acceleration which they experience
in the field.

Equations (2) may be simplified. This is due to the
fact that in weak fields in the absence of vacuum
phenomena the drift velocity is several orders smaller
than the average thermal velocity, Of course, the
expression vAe E/m may be used to estimate the drift
velocity. If A is set equal to 10~ ¢m in this expres-
sion, which corresponds to a pressure of p =1 mm
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(in actual conditions p is usually higher), then v, will
be of the order of 10° cm/sec, and the mean velocity
of random motion of the electrons in these conditions
is roughly 10° em/sec, i.e., two or three orders
higher than the drift velocity. For large pressures p
and small E the difference between V and vy, is clearly
large. If this is taken into account, then, as is clear
from the figure, the absolute value of the angle £

must be considered to be small, and so the system of
equations (2) transforms to the simpler form

A (sing — § cosg) =V sinats, (1 nwa>
Afcosa -+ Esina) = (Voosa 4+ Y,v4)7,, = E /e (3)

Solving these equations for vy, we find

1 2e\E a
Dy == m(W—f— —;g—cosa) —V, 4)
We will now determine the drift velocity of the

electrons inside the sphere. It is equal to

i c
U = Eﬁgvadl\/} . (5)

0

Setting in dN, and v, and making the change of
variable cos @ = x, we obtain a standard integral.
Using [3], we find
*
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Finally, setting (6) in (1), we obtain the refined
clagsical formula for the electrical conductivity

6% 1
6 == 2 ——o . +
m VV2+2E*+ VVEoRE

neV . 2y — (VVEL R* — VVE—2E*
e l 2E*
T Ny e v . O

It is clear that ¢ is a complicated function of the
field strength E and gas pressure p, since A= A\;p,
and, moreover, the degree of complexity becomes
even greater if we take into account that ng, Aand V
also depend on E in strong fields. ¥or a more definite
estimate of ¢ from (7) we will confine ourselves to two
physically simple situations.
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Let the mean energy which the electrons acquire
in the field over an interval A be much less than kT
(very weak field), then ne and A may be considered
as constants, and the velocity of random electron
motion, in accordance with Maxwell's law, will be a
function of temperature only
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Setting (8) in (7) and letting E in (7) tend to zero,
we obtain, as one would expect, the Drude-Lorentz
formula
1 et
2 m V8T jam *

6= 9)
The case when the mean electron energy in the

field is much larger than kT is also important. For

a gas at temperature T, of the order of 1000°, for

example, and pressure p of the order of 1 mm Hg,

this condition will be fulfilled in a field of strength E

up to 1 V/em. In this case, as Druyvesteyn [1] stowed,

the mean velocity of random electron motion is de~

termined by the expression

V:%(%—E)%

t4mA e
mp "= Q* ) N (10)
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Here 2 is the electron free path for unit pressure,
for example, for p =1 mm, M is the ion or molecular
mass,

E/p u/p up(Zi/p)=
0.20 2.80 1.26
0.23 2.50 1.25
Ne 0.30 2.30 1.26
- 0.48 2.00 1.36
0.65 1.76 1.37
1.00 1.40 1.40
0.48 1.45 0.99
He 0.65 1.25 1.01
0.92 1.00 0.96
1.00 0.94 0.94
0.10 2.40 0.77
Ar 0.14 2.00 0.76
0.20 1.60 0.72
0.30 1.10 0.60

Thus in the fields considered the velocity of ran-
dom electron motion is a function of the field. If we
calculate the velocity of random motion according to
Dryuvesteyn for the conditions given above, it turns
out to be an order higher than the electron drift velo-
city. Thus the condition that the angle £ be small
remains valid. At the same time, in a field strength
of the order of 1 V/cm we may still neglect inelastic
collisions, and so ng and A, may, as in the first case,
be considered independent of the field. Allowing for
this, on setting (10) in (17) we obtain

2n 2%k )’/z< P >‘/a[ ®

= IV e+
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Since % is of the order of 1/6 or less, expression (11)
may be simplified. To do this we expand the factor

in square brackets in powers of »® and reject terms
of higher than first order

252 2 A
po = % % (2ne’: x")/ (%) . (12)
The resulting expression coincides with the ex-
pression for the electron conductivity of gases ob-
tained by the statistical method [1]. It is clear from
(12) that variation of the electrical conductivity de-
pends closely on p/E. The nature of the variation is
such that the product povE/p should be constant in the
physical conditions under consideration.

The table gives values of u/p [em? - mm/V . sec].
Here u is the mobility of free electrons in the gas,
a quantity which, in the case being considered, is
proportional to ¢, E/p [V/em « mm Hg] and the pro-
duct 7 = pu (E/p)/? for Ne, He and Ar. We calculated
all these values from graphical data given in Ebert's
manual [4].

It follows from the table that up to the well-known limit of the
argument E/p, poVE/p is actually close to a constant. We shall com-
pare the result obtained with the Drude-Lorentz formula, The Drude-
Lorentz formula assumes that the mobility of the current carriers is
independent of the field strength., The mobility is proportional to A
or 1/p. Thus the product u - p should not depend on E/ p. It is clear.
from the table, however, that as E /p increases the magnitude of u - p
decreases continuously. Thus for argon, when E /p increases from 0,1

to 0.3 the product u -+ p decreases to less than half its value. Thus
formula (7) describes the experimental data considérably better than
the Drude-Lorentz formula. '

At large E /p relation (12) is violated. This is physically under-
standable. At large values of the parameter E /p inelastic collisions
become important, as a result of which not only the veloeity of the
electrons, but also their concentration and free path depend on the
field, .

In conclusion, we stress once mote that when certain conditions
are fulfilled equation (7) is suitable for evaluating the eleciron con-
ductivity of gases in strong fields. If the field is stationary, the gas
isotropic and relatively remote from a state of molecular vacuum,
then the basic prerequisite that the mean drift velocity be less than
the mean velocity of random motion also remains valid in this case.
If this is so, then, determining the electrical conductivity with an
accuracy to the unknown functions ne, A and V, we obtain expression

(e
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